If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+11.2x+1.2=0
a = 4.9; b = 11.2; c = +1.2;
Δ = b2-4ac
Δ = 11.22-4·4.9·1.2
Δ = 101.92
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11.2)-\sqrt{101.92}}{2*4.9}=\frac{-11.2-\sqrt{101.92}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11.2)+\sqrt{101.92}}{2*4.9}=\frac{-11.2+\sqrt{101.92}}{9.8} $
| /3y-7=8y+23 | | a=-5;8a+7-2a | | 1+2x+x2=0 | | 15-4t=3 | | 4(3a-4)=2(6a-8) | | -5=-6g-8 | | r-16=-31 | | 98+m=98 | | 1.25x2x3=5.05 | | 8k−14=−4k+10+12(k−2) | | v²+14v=–1 | | 8-4(2m-2)=42 | | T(x)=6x-2 | | 25x^2-112x-80=0 | | -5=6g-8 | | −2(−8x−1)=−37+3x | | 2.75x4=11 | | v2+14v=–1 | | 5x-2{x-7}-6=14 | | 5m—2=13 | | t+18=4 | | -77=7(r-7)-14 | | 3h=10h-7 | | 4(x+6)=0.4(x+2)-2.92 | | 1,250+27.50w=1,400-20w | | 5(6x−4)=6x+4 | | 4x=(18)2x+5 | | 3j-42=15 | | 7-9d=-10d | | 8y-1=31 | | 95+(i+38)=(38+95)+84 | | -3.2x=1.5 |